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J. Phys. A: Math. Gen. 23 (1990) 641-663. Printed in the U K  

The remarkable algebra so*(2n), its representations, its 
Clifford algebra and potential applications 

A 0 Barutt and A J Bracken$ 
International Centre for Theoretical Physics, Trieste, Italy 

Received 29 November 1988, in final form 12 May 1989 

Abstract. Properties of the real Lie algebra so*(2n) and its finite-dimensional representa- 
tions are described. The structure of the Clifford algebras associated with the two funda- 
mental spinor representations are determined, and it is found in particular that for so*(4n), 
there is a remarkable asymmetry: one representation is real, the other complex (though 
equivalent to its complex conjugate), and the associated Clifford algebras are inequivalent. 
Generalised Dirac matrices are defined, acting within the direct sum of these two spinor 
representations of so*(2n). These matrices generate a different Clifford algebra, not 
determined uniquely by those representations, and their commutators do not span a 
representation of so*(2n). The isomorphisms of s0*(6) with su(3, l ) ,  and of so*(8) with 
s0(6,2) are described, together with the corresponding mappings between finite- 
dimensional irreducible representations. The latter isomorphism is related to the triality 
property of so(8), and in particular maps the real fundamental spinor representation, the 
complex fundamental spinor representation, and the complex vector (defining) representa- 
tion of so*(8), each of dimension eight, into the real vector representation and the two 
complex fundamental spinor representations of s0(6,2). More generally, some tensor 
representations of so*(8) are mapped into spinor, others into tensor representations of 
s0(6,2), and the same is true of spinor representations of so*(8). This raises the possibility 
of interesting applications of so*(2n) ,  n > 4, as a generalised spacetime symmetry or 
dynamical algebra, with tensor and spinor representations of so (3 , l )  < so*(2n)  contained 
in an irreducible multiplet. Mention is made in particular of a recent proposal by Ward 
to base a unified field theory on so*(14)>so(3,1)0su(3)0su(2)0u(l). 

I. Introduction 

The Lie groups SO(p,  q )  and their coverings have many important applications to 
physics, for various values of the non-negative integers p and q. We recall at once the 
spacetime groups [ 11 S0(3), SO(3, l ) ,  etc, the use of S 0 ( 4 , 2 )  as a dynamical group 
[2] and the use of the compact groups S O ( p )  to express symmetries in nuclear [3] 
and particle physics [4-61. Accordingly, the representation theory of SO(p, q )  has 
been explored fairly extensively [7 ,8] ,  especially for small values of p and q. In 
particular, the finite-dimensional irreducible representations (irreps) are well under- 
stood for all p and q, as is the structure of Clifford algebras [9-111 associated with 
the fundamental spinor irreps. 

With p + q = 2n + 1 ,  a fixed odd integer, the set of real Lie algebras so( p ,  q )  exhausts 
the possible real forms of B,, the complexification of so(2n + 1). However, if p + q = 2n 
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is even there is, for each n, one additional real form [8, 12-14] so*(2n) of D,, the 
complexification of so(2n). We know of no important applications of so*(2n) to 
physics until now, though the algebra has been mentioned in particle physics [ 151; 
and although various aspects of the structure and representation theory have been 
developed-for example, ladder representations of so*(2n) have been constructed 
[15, 161, and so*(2n) has been used [17] in the construction of models [18] of the 
algebra su( m)-it is fair to say that so*(2n) remains unfamiliar to most mathematical 
and theoretical physicists. 

Our present interest stems from a proposal by Ward [ 191 to use so*( 14) as the basis 
for a unified gauge field theory of elementary particles. He has observed that since 
[8, 12-14] 

s0*(8)=s0(6,2)>so(3,2)@su(2) 

so*(6)=su(3, l ) > s u ( 3 ) @ u ( l )  
(1.1) 

then 

so*(14)> s0*(8)Os0*(6)>s0(3, ~ ) @ s u ( ~ ) @ s u ( ~ ) @ u ( ~ ) .  (1.2) 

The subalgebra su(3)Osu(2)Ou( 1) is of considerable interest in gauge theories, and 
we have here the possibility to combine it with the Lorentz algebra s o ( 3 , l )  < so(3,2). 

Ward [19] has also noted the interesting feature that, because of the nature of the 
isomorphism between s0*(8) and s0(6,2), an irrep of so*(2n), n > 4, will, in general, 
contain both tensor and spinor irreps of so(3, l ) ,  so that there is a possibility of 
incorporating both bosons and fermions in an irreducible multiplet, with an associated 
so*( 14)-irreducible field. 

In what follows we shall present some of the properties of so*(2n), with particular 
emphasis on the mapping between s0* (8 )  and s0(6,2), and on the finite-dimensional 
irreps. The latter are determined by, and are in one-to-one correspondence with, those 
of so(2n), which are well known. Nevertheless, there are several interesting special 
features, especially with regard to the reality of the fundamental spinor irreps, the 
structure of associated Clifford algebras, and the form of generalised Dirac matrices 
that link these two irreps. 

It is not our purpose here to develop in detail any application of so*(2n) to particle 
physics, but in the final section we indicate briefly some interesting possibilities that 
provide the justification for our investigations. 

11. Definitions and bases for so*(2n) 

11.1. The group SO*(2n) can be identified [8] with that group of complex linear 
transformations g of C'", z --f gz, which satisfy 

( g z ) T ( g w )  = Z T W  (2.1) 

( g z ) % g w )  = zArlw (2.2) 

for all z, W E C ~ " ,  where 

.=[ - O 1" 3 (2.3) 
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I, being the n x n unit matrix (here and below T, * and t denote transpose, complex 
conjugate and Hermitian conjugate, respectively). The matrices X in the corresponding 
Lie algebra are then defined by the conditions 

XT=-X (2.4a) 

g x +  = -x7. (2.46) 

It follows from (2.1) and (2.2) that g has unit determinant, and hence from (2.1) that 

SO*(2n) < S0(2n, C). (2.5) 

11.2. An alternative definition [14,20] of SO*(2n) is obtained by replacing (2.1) and 

(gZ)Te(gW) = Z T e W  (2.6) 

(2.2) by 

( g z ) + Y ( g W )  = Z t Y W  (2.7) 

where 

It can then be seen from (2.7) that 

SO*(2n) < SU(n, n). (2.9) 

The corresponding Lie algebra so*(2n) now consists of matrices Y satisfying 

yT= - e y e  (2.10a) 

Y t  = - yYy .  (2.10b) 

11.3. The isomorphism of the two groups or algebras defined in 11.1 and 11.2 is 
established with a unitary transformation which maps, in particular, a typical X into 
a typical Y :  

(2.11) 

11.4. We shall proceed from the second definition 11.2, noting from (2.10) that in 
general Y has the form 

Y = [ ;+i3 (2.12) 

where A, B, C are n x n real antisymmetric matrices and S is an n x n pure imaginary 
symmetric matrix; all of A, B, C, S are therefore anti-Hermitian. 

11.5. Since there are fn(n - 1) linearly independent matrices of type A, B or C and 
fn(n + 1) of type S, the dimension of the real Lie algebra so*(2n) is n(2n - l) ,  as for 
so( 2n ). 

11.6. We note from (2.12) the u(n)  subalgebra of matrices with B = C =0,  and the 
so( n )  < U(  n )  subalgebra with B = C = S = 0. 
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11.7. It is easily seen from (2.6) and (2.7) with n = 1, that 

S0*(2)  = SO(2) (2.13) 

so that S0*(2)  is compact. For n > 1, SO*(2n) and so*(2n) are non-compact; for n > 2 
they are simple. 

11.8. There exist the following isomorphisms [8, 12-14]: 

s0*(2) = so(2) 

so*(4) = su(2)Os1(2, R)  

s0*(6) = su(3, 1 )  

s0*(8) = s0(6,2).  

11.9. For r, s = 1, 2 , .  . . , n, define 

A,, = E,, - E,, S,, = i( E,, + E,, 1 

(2.14) 

(2.15) 

where E,, is the n x n matrix with 1 in the rth row, sth column, and zeros elsewhere, 
so that E&, = S,,E,,. Then setting 

0 A,, 
p I , = - p  \ r  =-i[,., o ]  

mry = m,, = -I 
. [sd. - O I  s r ,  

"..I 0 

(2.16) 

we see from (2.12) that il,,, ip,,, iq,, ( r >  s )  and imrr ( r  2 s) provide a basis for so*(2n). 
From now on, we introduce the 'physicists' i' and refer to I,,, p r i ,  q,, and mrs as basis 
operators, allowing also r and s to range over 1, 2 , .  . . , n. The fundamental commuta- 
tion relations of so"(2n) are then 

[m,,, m,,1 = i(67fL,, - W,, -&,I,, +U,,) 

[w,, p,ul= i(-&,qru + 6 r , q u ,  - 6 r , q , ,  + S,,,q,,) 

[m,, ,  q r u l  = ~ ( ~ , , P , U - ~ , , P U , + ~ , , , P , ,  - 8 i u P r r )  

[ P r y ,  P r u l  = i ( W , U  + 6 , , 1 u ,  - 6 r u L  - L l , , )  = [ q r , ,  SIUl 
(2.17) 

[P,*, qw1 = i(-&m,, + 6r", - 6r,mt, + &rmrr) 

[ I , , ,  x,,1 = i ( - k l x r , ,  + 6,,x,,, + &,xr, - L x , , )  

where xrU denotes any of I,,, m,,, pfu, q,,,. The I,, span the s o ( n )  subalgebra, and the 
I,, and m,, span the u ( n )  subalgebra, mentioned in 11.6. 

11.10. It  is sometimes convenient instead to work with the complex combinations 

(2.18) 
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and to bear in mind that the basis operators really consist of 

(2.19) 

(2.20) 

11.11.  We find it useful at times also to bring out the relationship between so"(2n) 
and SO(2n) by introducing the complex linear combinations j k /  ( = - j / k ,  k, I =  1 ,  
2 , .  . . , 2 n )  defined by 

I r + s  
j 2 , - i  . ? - - 1 = j ( - 1 )  (lrx-iqrq) 

j 2 r - 1  27 =4(-1)r+s(mry-i~rs) 

j,, 2s = 4(-1)r+i( Irs + iqn) 

for r, s = 1, 2 , .  . . , n. These satisfy the familiar so(2n) relations 

(2.21) 

(2.22) 

(2.23) 

11.12. In a representation of so*(2n) we denote the representatives of I,.,, mr,,. . . , g:, 
grs, .  . . , and j k /  by L,,, M,,, etc. If  the representation is Hermitian (for example, one 
associated with a unitary representation of S0*(2n)) ,  then L,,, M,,, Pr, and Qrs are 
Hermitian, while 

(2.24) 

For n > 1 ,  such a representation is either trivial or infinite-dimensional, since so*(2n) 
is (semi-) simple and non-compact. 

In a finite-dimensional representation, we can suppose without significant loss of 
generality that L,, and M,,  are Hermitian, but that 

P:, = - P,, Q:7 = - Q r r .  (2.25) 
Then 

Grsy = -Gr, (2.26) G:'= GI 

and all Jk/ are Hermitian. 
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11.13. As 11.11 shows, representations of so*(2n) and so(2n) are in one-to-one corre- 
spondence. It is convenient to display the basis operators Jk, of a representation of 
so(2n) in a triangular array, 

556 

, . .  

. . .  

e . .  

(2.27) 

In order to construct from this array, a set of basis operators for the corresponding 
representation of soX(2n), we proceed according to (2.23) and select firstly 2JI2 (=MI,) ,  
2J34 ( =  MZ2), 2JS6 (=  etc. on the diagonal of the array. Then we choose from 
each 4 x 4 block -1 the combinations 

(-1Ir+’(J2r-t 27-1  +J2r  2 s )  ( = L s )  
( - l ) r + S ( J 2 r - ~  2s  - J2r 2 s - 1 )  (=Mrs )  

i ( - l ) r + S ( J 2 r - l  2 s - 1 -  J2r 21) ( = C ? r s )  

i(-1)r+s(J2r-, 2 r +  J2r 25-11  (=pry)* 

This may be contrasted with the passage from basis operators of a representation 
of so(2n) to those of a corresponding representation of so(2n - m, m ) ,  which can be 
achieved [8] by the Weyl trick, multiplying by i those elements contained in both the 
first (2n - m )  rows and last m columns of the array (2.27), and multiplying by (-1) 
the remaining elements of the last ( m  - 1) columns. 

11.14. It is well known [8, 121 that the real forms of the complexification of a compact 
and simple real Lie algebra are defined by involutive automorphisms of the latter. In 
the case of so*(2n), the relevant involutive automorphism S of so(2n) is defined by 

S:j2r 2 r * j z r - i  zi- l  

jlr z S - l  - jzs  2 r - I  (2.28) 
for r, s = 1, 2 , .  . . , n. According to a general prescription [ S ,  123, a basis for so*(2n) 
is then obtained from that for so(2n) by applying the transformation P =  
;( 1 + i ) Z  + &( 1 - i)S, where Z is the identity transformation. We get 

p:jzr-l  27-1+&(1+i)j2r-l zs - I+f ( l  - i ) j 2 r 2 5  [ = f ( - l ) r + s ( ( C ~ + q r ~ ) I  

j 2 ,  z S -  + t (  1 + i ) j2 r  2 e -  + f( 1 - i ) j 2 ,  Z r -  1 [ = f ( -  1 )r+i ( P r r  - m,, )I  
j z r  2 ,  + 4( 1 + i k r  2 s  + t (  1 - i h r -  I z I -  I (2.29) 

It may be noted from (2.24) that S corresponds to the mapping of Hermitian conjugation 
in a Hermitian representation of so*(2n). 

[= f(-1)‘+‘ ( I r ,  - 4 r y ) I .  

111. Finite-dimensional representations 

111.1. An irrep of so(2n) is labelled completely [7] by a highest weight 
( m , ,  m,, . . . , m,,), corresponding to a choice of ( j I 2 ,  j 3 4 r . .  . , j 2 n - l  2 n )  as basis for a 
Cartan subalgebra. Here the m, are either all integers or all half-odd integers, satisfying 

m, a m2 a.. . s  rn,,-] /m,,l> O (3.1) 
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and each highest weight satisfying these conditions is allowed. We label the correspond- 
ing irrep of so*(2n) in the same way. Note that (j12, j34,. . . ,j2n-l 2 n ) = ( f m l l ,  
I I 
jm22, * * .  , ~ “ I h  

111.2. The reality properties of the corresponding irreps of so*(2n) and so(2n) (or 
so( p ,  q ) ,  p + q = 2n) differ. In particular, it is easily checked that the defining (2n- 
vector) representation (1, 0, 0, . . . , 0) is pseudo-real (i.e. complex but equivalent to its 
complex conjugate) for so*(2n), though real for s o ( 2 n )  (and for so(p, 4)). 

111.3. We turn now to the two fundamental spinor irreps (4, f ,  . . . , f, Itf), each of 
dimension 2“-’. In the case of so(2n), these two are contained in direct sum in the 
fundamental spinor irrep of so(2n + 1) > so(2n), of dimension 2“. Labelling a basis 
J k , ,  J k  2 n + l  (= -J2n+l k )  for an irrep of so(2n + 1) in the usual way, with k, I =  1,  
2, .  . . ,2n,  we exhibit this basis as a triangular array generalising that for so(2n)  in 
(2.27); it has one extra column on the right with elements Jk 2 n + l .  A basis for the 
fundamental spinor irrep of so(2n + 1) is given in terms of n commuting sets of Pauli 
matrices [22] um, pa, T,, . . . (a = 1,2,3).  Thus for so(3) and so(5) the triangular arrays 
are (apart from an overall factor of f) 

U3 -U2 u3 -‘2 (+1P3 

(3.2) 
U1 and a2p3 -a2p2 

a3p3 -‘3k?2 

P I  * 

The pattern of successive arrays generalising these two can be developed as follows. 
In going from so(2n - 1) to so(2n + 1) we introduce a new set of Pauli matrices U,, 

say. Suppose that the corresponding set introduced at the previous stage (going from 
so(2n - 3 )  to so(2n - 1)) was v,. We add two columns on the right of the array for 
so(2n - 1). The first is obtained by multiplying the last column of the so(2n - 1) array 
by -iv3w3 on the left, and adding an element v 3 0 3  at the bottom. The second is 
obtained by multiplying the first additional column by -iwl on the left, and adding 
an element wI at the bottom. For example, the third and fourth columns of the so(5) 
array in (3.2) are obtained in this way from the so(3) array, with multiplications by 
-iu,p3 and then - ip, .  

More generally, we build up in this way the array 

U3 -U2 -‘71P2 a1P173 -(J1P172 U I P I T I A ~  - ~ I P I T I A ~  e . .  

U1 u2p3 -a2P2 U2P173 -u2P172 ( + ~ P I ~ I A ~  - ~ ~ P I T I A ~  - . .  
U3P3 -u3P2 U3P173 -‘3p1T2 ( + ~ P I T I A ~  - U ~ P I T I A ~  

(3.3) 
PI p273 -P272 P271A3 -P271Az . . .  

P3T3 -P372 P 3 T l A 3  -P3T1A2 * * 

71 72A3 -72A2 . . .  
73A3 -73A2 . . .  

A i  . . .  
of which the array for so(2n + 1) consists of the first 2n columns. 

The triangular arrays for the fundamental spinor irreps of (f, f, . . . , f, 3tf) of s o ( 2 n )  
are obtained from the array for the so(2n + 1) spinor by deleting the last column, and 
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replacing w 3  by its eigenvalues r l  in turn. For example, for so(4) we get from the 
so(5) array (3 .2) ,  

U3 -U2 OIp3 U3 -U2 *Cl 

U3 P3 *U3 

(+I U2P3 and then ( T I  * U ,  (3.4) 

The basis operators of the fundamental spinor irreps of so*(2n)  can then be constructed 
as in 11.13. For the case of so*(4) we get from (3.4) 

MI, = U3 = fu3 LIZ = +(U, 7 U21 

Q12 = ti( u2 * u2) 
(3 .5)  

MI2 = ;(Ul T U, )  p 1 2 -  - - l i (  2 UI*t(+l). 

The only non-zero basis operators for the irrep (f , i) are therefore u3, iu2 and iu ,  , 
while for the irrep (i, -4) they are u3, u2 and U , .  We see that (4, f) can be regarded 
essentially as a two-dimensional irrep of so(2,  1) = sl(2, R), and is therefore (equivalent 
to) a real irrep, while (f, -4) is essentially a two-dimensional irrep of su(2) and is 
therefore pseudo-real. The association of the two spinors with different subalgebras 
is not typical of higher values of n, and reflects the fact that so*(4) = sl(2, R)Osu(2) 
is not simple. However, the fact that one spinor irrep is real and the other is pseudo-real 
is typical of so*(4n) ,  n = 1, 2 , .  . . , as we shall see. 

111.4. The fundamental spinor irreps of so*(2n) ,  s o ( 2 n )  and so(2n+ 1) can also be 
defined [23]  concisely in terms of n Fermi creation operators a' and conjugate 
annihilation operators arr r = 1, 2, . . . , n satisfying 

(3.6) 
Such an algebra is well known to have an irrep of dimension 2" ; I is the corresponding 
unit operator. For s o ( 2 n )  and so*(2n)  we set 

{ U r ,  a \ }  = s;z { arr  u s }  = { a  r ,  a s }  = 0. 

G : = f [ a ' ,  u , ] = u ' u , - ~ S : I  G " = f [ a ' , a ' ] = a ' a s  
(3.7) 

G,, =; [a , ,  a,] = a,a,. 

Corresponding L,,, M,,, . . . and Jkl can then be defined as in (2.20) and (2.21). For 
so(2n  + 1) we add also Jk 2 n + l  (=  -J2n+l k ) ,  k = 1, 2 , .  . . ,2n ,  defined by 

J2r- i  2 n + I = - i ( a r + a r )  J 2 ,  2 n + l  = -$(a, - a r )  (3 .8)  

We introduce a uacuum uector 10) with a,10) = 0, r = 1, 2 , .  . . , n. The carrier space 

(3.9) 

with r = 1, 2 , .  . . , n. 

for one spinor irrep of so*(2n)  and s o ( 2 n )  is spanned by the vectors 

IO), a'a'lO), a 'aSa'a"~0) ,  . . * 

corresponding to even eigenvalues 0, 2, 4 , .  . . , 2 m  of the number operator 

N = a'a, = G : + f n l  =$(MI,  + M2,+. . . + Mnn)  +in1 (3.10) 
where 2 m  = n or n - 1, according as n is even or odd. (Recall that a product of more 
than n creation operators vanishes.) The number of linearly independent vectors in 
(3.9) is (:)+(;)+. . . + ( Z L ) = 2 n - L  as required. 

U' lO) ,  a'a'a'lO), . . . 
Similarly, the carrier space for the other spinor irrep is spanned by 

(3.11) 
corresponding to odd eigenvalues 1, 3 , .  . . , 2 m  + 1 of N, where 2 m  + 1 = n - 1 or n, 
according as n is even or odd; again there are (:)+(;)+. . .+(z;+,) = 2 " - '  linearly 
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independent vectors here. Since (3.10) implies that N has the eigenvalue n on a vector 
with weight (f, 4,. . . , f ,  i), it follows that the irrep (4, 4,. . . , 4, 4) corresponds to (3.9) 
if n is even and to (3.11) if n is odd. The vectors (3.9) and (3.11) together span the 
whole 2"-dimensional space, carrying the fundamental spinor irrep of so(2n + 1 ) .  

111.5. The equivalence of the realisations described in 111.3 and 111.4 is established by 
setting (for n > 1) 

a -1 a 1 = 4 ( a , + i a , ) p 1 7 1 .  . . p l v l w z  

U 3 = f ( / 7 3 7 1 + i 7 2 ) .  . . / . L I V I W ~  3 - 2 ( P 3 7 1 - i 7 z ) . . . ~ . 1 ~ 1 ~ 2  

1 - z ( a 1  -i~z)P171 . . . P I V I W 2  

a 2 = f ( a , p l + i p z ) ~ 1  . . . p I v I o . z  ~ ~ = f ( a , p , - i p ~ ) ~ ~  . . . ~ ~ v ~ w ~  

a -1 

and 

a" =f(v3wz-iwl) a,, = f( v ,wz+iwl ) .  (3.12) 

(For n = 1 ,  we simply set a l = f ( a Z - i a l ) ,  a l = f ( a z + i a l ) . )  
Note that 

a 1 a l = ~ ( I + a , ) , a 2 a , = ~ ( z + a , p , ) ,  . . . ,  a " a , = t ( Z + v , w , )  
(3.13) 

N = ;(a, + a+,+ p , ~ , + .  . . + v3w3) +$d. 

111.6. In these spinor representations as constructed, the Hermiticity relations (2.25) 
and (2.26) hold. Since L,, and M,, commute with N, while P,, and Qrs consist of 
linear combinations of operators which shift the value of N up or down by two units, 
as (3.7) and (2.20) show, we have 

(3.14) 

where 

I = e x p ( i ~ N / 2 ) .  (3.15) 

Equivalently 

JZT = ZI (3.16) 

where Z is any of the so*(2n)  basis operators L,,, M,,, P,,, Q r S .  On the vectors (3.9), 
l has eigenvalues * l ,  so 12=  Z in the corresponding spinor irrep (4, f ,  . . . ,$, (-1)"i). 
On the vectors (3.11), 5 has eigenvalues *i, so that 1 2 =  -I in the spinor irrep (i, 
4 , .  . . , f ,  (- l)"*'f) .  In  any case, (3.16) shows that 5 is essentially a Hermitisingoperator 
for these spinor irreps. Note from (3.13) that 

I = e1rrn'4 e x p ( i ~ a , / 4 )  exp(im,p, /4) .  . . exp(i~v,w,/4) 

=[ f ( l+ i ) ]" (1+ia3) (1+ia3p3) .  . . (1+iv3w3).  (3.17) 
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IV. Clifford algebras and generalised Dirac matrices 

IV.l. We begin by recalling some results for Dirac matrices and Clifford algebras 
[9-113 associated with the fundamental spinor representations of so( p ,  q ) ,  p > 0, q 3 0, 
p + q = 2n. We start with the triangular array for the fundamental spinor irrep of 
so(2n + l ) ,  and (for q > 0) multiply by i all elements Jkl, Jk 2n+l with k or 1 (but not 
both) E {2n, 2n - 1, .  . . ,2n  + 1 - q }  and multiply by (-1) all elements JLl with both k 
and 1 in that set. The operators in the array so defined provide a set of basis operators 
JL,, J)kZn+,  of the fundamental spinor irrep of s o ( p +  1,q) .  The elements of the last 
column are generalised Dirac matrices y; (=25;  2 n + l )  for so( p ,  q ) ,  satisfying 

where (gk/)=diag(l ,  1 , . . . ,  1, -1 , . . . ,  -1) [ p ( + l ) s  and q(-l)s]. 

respect to so( p ,  4). We also introduce 
The last of the relations (4.1) shows that the y; form a 2n-vector operator with 

E ' =  yly;.  . . y;,, = ( i ~ " + ~ w ~  (&y=( -1 ) "+41=  ( - 1 y P - q q  . (4.2) 

The operators J ; /  are basis operators for (the direct sum of) the two fundamental 
spinor irreps of s o ( p ,  q ) ,  corresponding to the eigenvalues i l  of w 3 ,  and hence *(i)"'4 
of E ' .  The y ;  are intertwining operators for these two irreps: 

{ y i ,  E ' } = O .  (4.3) 

For example, to go from so(5) to so(3,2) and then to s0(2,2), we replace the array 
(3.2) by 

u3 -ia2 iaIp3 -alp, 2Ji2 2Ji3 2Ji4 y; 
ia, i(+2P3 -UzPz - - 2J;3 254, Y; 

-a3p3 -i(T3P2 2JS4 Y; (4.4) 

'PI Yk * 

As a consequence of the first of (4.1), the yi generate the real Clifford algebra 
%( p ,  q )  with even part % + ( p ,  q )  generated by the operators iJLl, and, more specifically, 
by the operators (1, = iJik, k = 2, 3 , .  . . ,2n  which satisfy 

5 9  = -2g,J k , l = 2 , 3  , . . . ,  2n. (4.5) 

Thus % ' + ( p , q ) z  (e(q,p-1). 

IV.2. The algebras % ( p ,  q )  have been classified and their structure analysed [9-111. 
As we have specified here that p + q = 2n is even, we know that %( p ,  q )  is simple. Its 
centre, generated by Z, is isomorphic to R, the algebra of real numbers. Furthermore, 
we have 

&(2", R) 
&(2"-', H )  

p - q  = O  or 2 (mod. 8) 
p - 4  = 4  or 6 (mod. 8) 

where Ju(2", R) and &(2"-', H )  are the algebras of 2" x 2" real, and 2 " - ' ~ 2 " - '  
quaternionic matrices, respectively. 
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The subalgebra %'+(p ,  q )  has a non-trivial centre, generated by I and E ' .  (Since E '  

anticommutes with each y ; ,  it commutes with any product of an even number of the 
y ; ,  and so with all euen elements of %( p ,  q ) . )  If p - q = 2 (mod. 4), then ( p  - q)/2 is 
odd and (4.2) shows that ( E ' ) '  = - I .  Then %'+( p ,  q )  is simple, with centre isomorphic 
to C, the algebra of complex numbers; we have in fact 

%+( p ,  q )  = q q ,  p - 1 )  = A(2n-', C) p - q = 2 (mod. 4).  (4.7) 

If p - q = 0 (mod. 4), then ( p  - q)/2 is even, ( E ' ) '  = + I ,  and the centre of %'+(p ,  q )  is 
isomorphic to ROR.  Then % + ( p ,  q )  is not simple, but splits into a (direct) sum of 
two ideals: 

%?+(p,  q )  = %?+(p, q ) g I  - - E ' ) @  %?+(p ,  q ) f ( I +  E ' ) .  (4.8) 

Each ideal is isomorphic to A(2"-', R) if p - q = 0 (mod. 8), and to A(2"-', H) if 
p - q = 4 (mod. 8), i.e. 

A(2"-', R)@A(2"- ' ,  R) 
~ 2 ( 2 " - ~ ,  H)@&(2"-', H) p - q = 4 ( m o d .  8). 

p - q = 0 (mod. 8 )  
(4.9) 

The two ideals in each case are associated with the eigenvalues il of E '  and hence 
with the two fundamental spinor irreps of so( p ,  4). 

IV.3. Since these irreps are of dimension 2"-', it follows from (4.7) and (4.9) that they 
are real representations if and only if p = q (mod. 8). On the other hand, it is easily 
seen from a consideration of weights that each of these irreps is (at least) pseudo-real 
if ( p +  q)/2 ( = n )  and q are both even or both odd. If one is even and the other odd, 
then the two spinor irreps are complex conjugate to each other. 

IV.4. Contragradience relations [21] amongst irreps are the same for all real forms of 
D,. In particular, the two fundamental spinor irreps are contragradient to each other 
if n is odd, and self-contragradient if n = 2m is even. (In this latter case they are 
orthogonal or symplectic according as m is even or odd.) 

IV.5. We now turn to the case of so*(2n) beginning again with the 2"-dimensional 
space carrying the direct sum of the two fundamental spinor irreps, and with the 
associated array of basis operators Jkl of so(2n), expressed as before in terms of either 
n sets of Pauli matrices or n pairs of Fermi operators. Dirac matrices yo, a = 1, 
2 , .  . . , 2 n  must now be required to transform as a 2n-vector operator with respect to 
so*(2n). Thus if L,,, M,, . . . are the so*(2n) basis operators in the 2"-dimensional 
space, we must have 

[ Y o ,  Lrvl  = ( 1 r s ) o b Y h  [ Y o ,  M r ~ I = ( m r ~ ) o b Y b  etc (4.10) 

where I,, etc. are basis operators in (a representation equivalent to) the defining 
(2n-vector) representation, with matrix elements ( 1 r s ) Q b  etc. Here r, s = 1, 2 , .  . . , n and 
a, b = 1, 2 , .  . . ,2n, and the repeated indices in (4.10) are summed over. (We use a, 
b, . . . rather than k, 1 , .  . . here, as the former are not necessarily tensor indices with 
respect to so(2n) operators Jkl, as we shall see.) 

It follows from (4.10) that 

[ { Y o ,  Y b ) ,  L r s l = ( l m ) o c { Y c ?  Y b ) + ( l r s ) b r { Y a ,  Y c )  etc. (4.1 1) 
If we are to have 

{ Y o ,  Y b ) ' 2 O a b I  (4.12) 
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for some real, non-singular, symmetric 2n x 2n matrix 8 with elements Ooh, then (4.11) 
implies 

!,,e + = o etc. (4.13) 

With I,, etc as in (2.16), this is satisfied only with 8 as in (2.8), (2.10a), up to an 
arbitrary multiplicative constant that can be set to unity by scaling the yo’s. 

Can we find yo satisfying (4.10) and (4.12)? The answer is yes: it is not hard to 
check that, in terms of the Fermi operators (3.6), we can set 

y r  = ( 1  - i )a r  y n l r  = ( 1  + i ) a ‘  r = 1 , 2  , . . . ,  n. (4.14) 

Their expression in terms of Pauli matrices is then determined by (3.12). It is easy to 
see that they are intertwining operators for the two fundamental spinor irreps of 
so*(2n); they anticommute with the last of the Pauli matrices q, which labels these 
irreps (see also (4.16) and (4.17) below). 

Because 8 can be brought to the diagonal form y as in (2.8), by a real orthogonal 
transformation, it follows that the real Clifford algebra generated by the ya is isomorphic 
to %( n, n) = &(2”, R). However, the Lie algebra spanned by the commutators [ -yo, yb] 
is evidently isomorphic to so(n, n) ,  not so*(2n); the latter is not included in %(n, n )  
in the way that s o ( p ,  q )  is included in % ( p ,  q ) ,  as a subset of (even) elements that are 
quadratic in the Dirac matrices. 

Since the I,,, mrs, etc. in (4.10) need only be equivalent to our operators in (2.16), 
we can more generally choose them to have the form l i s  = SI,$-’ etc., with I,, etc as 
in (2.16) and S any complex non-singular 2n x 2n constant matrix. Then 8 in (4.12) 
is replaced by 8’= SOST. Since S can be complex, it is possible to make 8’= 12,,, so 
that { y o ,  Yb} = 28obl; indeed, it is possible to choose S so that the ya can be identified 
with the y ;  of (4.1) (with q = 0) for a = k = 1 ,  2 , .  . . ,2n.  The real Clifford algebra 
generated by the yo is then %(2n, 0) and, according to (4.6), 

.&(2“, R) n = O  or 1 (mod4) 
~ i 4 ( 2 ~ - ’ ,  H) n = 2 o r 3 ( m o d 4 ) .  

%(2n, 0) = (4.15) 

Again the yo intertwine the two fundamental spinor irreps of so*(2n). However the 
[ yo, Yb] now span so(2n) rather than so*(2n). 

The source of these peculiarities lies, on the one hand, in the fact that the defining 
representation of so*(2n) is not real, so there is no natural choice for the signature of 
the matrix 8 in (4.12), and on the other, in the fact that, once a real 8 has been chosen, 
the operators yo and [ y o ,  Yb] together span a real Lie algebra which is some real form 
of (the complexification of) so(2n + l ) ,  as a consequence of (4.12). In general, none 
of these real forms contains so*(2n) as a subalgebra spanned by the [ y o ,  Yb]. (Roughly 
speaking, there is no ‘so*(2n + l)’ .)  

IV.6. The reader might conclude at this point that there is no real Clifford algebra 
unambiguously associated with either of the two fundamental spinor irreps of so*(2n), 
or with their direct sum. However, this is not the case. For the direct sum, we consider 
the real algebra %;,, generated under multiplication and real linear combination by 
the so*(2n) operators iL,,, iM,, etc. This is the analogue of the even part % + ( p ,  q )  of 
the Clifford algebra %+( p ,  q )  pertaining to the case of so( p ,  q ) ,  but obviously is defined 
independently of any choice of Dirac matrices. 

It is not immediately clear whether or not %;,, can be regarded as a Clifford algebra. 
For example, consideration of the triangular array (3.3) for n = 3 shows that we are 
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then considering the algebra generated by iu3, iCr,p,, ipjTj, i(az - u2p3), (u2 + 0 2 p 3 )  
etc, and these do not suggest any obvious set of generators satisfying elementary 
anticommutation relations. 

For general n, we begin by identifying the central element E of %;,, as 

E = ( iMlI)( iM2J . . . (iMflfl). (4.16) 

We see from (2.23) and (3 .3)  that, in terms of Pauli matrices, 

E = (i)"w, & 2 =  (-1)"I (4.17) 

where U, form the last set of Pauli matrices used to construct the triangular array for 
so(2n) (and so(2n + 1)); thus E is the same operator E '  as constructed in IV.l (with 
q = O ) .  

IV.7. Suppose now that n is odd, so that E' = -I. Then set 

(4.18) 

and note that each is an element of %;,,. In terms of w j  and the so(2n) operators J k ,  

we have 

lr-' = Z ( - I ) ~ + ' { J ~  , ,-,t( I + w ) + J~ ,J( I - U ) }  

In+r-l = 2i( - 1  ,'+'{J1 2r t (  I + w )  - J2 

r Z 1  
(4.19) 

I - U ) }  

for r = 1, 2 , .  . . , n, where 

= ( -1) '"-"/2  w3 w 2 =  I (4.20) 

and, since w3 commutes with J l k  and JZk, we see from (4.19) that 

{ I P ,  50) = -28, P, Q = 1 , 2 , .  . . ,2n  - 1 .  (4.21) 

These Cp therefore generate a real Clifford algebra [24, 10, 1 1 1  %(O, 2 n - 1 ) =  
Ju(2"-', C),  (since n is odd), which is a subalgebra of %;,, by construction. The 
dimension of this real subalgebra is 2"-' x 2"-' x 2; but this is an upper bound on the 
dimension of %f,, itself, given that the L,, etc are associated with the direct sum of 
two 22"-1-dimensional irreps. It follows that the lp generate the whole of @,,, and that 

(4.22) 

As remarked in IV.2, this algebra is simple, with centre isomorphic to C; the centre is 
spanned by I and E. Consistent with (4.22) is the fact that, when n is odd, neither of 
the fundamental spinor irreps of so*(2n) is real; a consideration of their weights, 
which are the same as those of the corresponding irreps of so(2n), shows that they 
transform into each other under complex conjugation. 

IV.8. Suppose now that n =2m is even. In this case, from (4.17), 

%ffl = %(o, 2n - 1 )  -- 4(2"- ' ,  C) n odd. 

E = ( - 1 ) " ' ~ ~  E * =  I. 

Then %& is not simple, but splits into a (direct) sum of two ideals, 

%;" = %g"@ %;A-' %;A*' = %,*,4( I f E ) .  

We note also from (3.17) that 

77=(-i)m5=(I+iM11)(Z+iMz2) . . . (Z+iMnn)/2m 

(4.23) 

(4.24) 
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is in %:,. The two ideals in (4.23) are associated with the eigenvalues *(-1)"' of w 3 ,  
and hence with the irreps (i, i , .  . . , f ,  *(- l ) '"i)  of so*(2n). In %':A+', w3 can be 
replaced by (-l)"'Z, and according to the results of 111.6, c2 = (-1)'" on the correspond- 
ing subspace. It follows that q 2  = I on %'::+'; furthermore, according to (3.14), 

(4.25) [ T ,  Lrs1=[7, Mr,l={7, f ' m } = { ~ ,  Qrv}=O. 
In %:A+', we now set 

qr-I = i(Mlr - 7 p l r )  ( ~ n - 2 + r  =i(Llr - 7Qlr) (4.26) 

for r = 2, 3 , .  . . , n. It can then be checked that these satisfy 

A, B = 1 , 2 , .  . . , 2 n  -2.  { ( P A ,  ~ s )  = -2SAB (4.27) 

For example 

{ ( P I ?  (Pt1+21=-{~12, L14)+t(p12, Q14)+?J{M12, Q14)+7{P121 L14) 
(using the properties of 7 )  

= - {J14-J23 9 J 1 7 + J 2 8 )  - {J14+JX 9 517  - J28) 

+ i?7{J14 - J 2 3  9 J17 - J2S) + 7{Jl4+ J23  9 J17 + J281 (4.28) 

The pA generate a real Clifford algebra %'(O, 2n -2),  which has dimension [ 10, 1 1 1  
which vanishes because {JI4, J17) and { J Z 3 ,  J 2 8 )  vanish. 

2"-' x 2"-l. Since this is an upper bound for the dimension of %';:+', we have 

H) m odd 
~ % ( 2 ~ - ' ,  R) m even. 

%;A+'= %'(o, 2n - 2 ) =  (4.29) 

Turning now to %:A-', where w3 can be replaced by (-l)"'+'I, we have q 2 = - I .  

5 =  W I l ) 7  (4.30) 

We introduce 

which is in %:" and satisfies t2 = I in %'$:-'. Then 

{t, Llr)={5,Mlrl=[5,  p l r l = [ 5 ,  Qlr1=0 (4.31) 
provided r f 1 .  In %'::-), we set 

cLr-1 =iQlr+iSLIr 4 n - 2 + r  = iP i r+i5Mir  
for r = 2 ,  3 , .  . . , n, and find that these satisfy 

(4.32) 

{ $ A ,  ( L B I = ~ ~ A B  A, B =  1 , 2 , .  . . , 2 n - 2 .  (4.33) 
Then we deduce that 

(4.34) 

Combining the results (4.29) and (4.34), we see that (cf (4.9)) 

%&- % ( 0 , 2 n - 2 ) 0 % ( 2 n - 2 , O ) - J U ( 2 " - ' ,  R ) @ A Z ( ~ " - ~ ,  H )  n even. (4.35) 
This algebra has centre isomorphic to R O R ,  generated by I and E.  The subalgebra 
A(2"-' ,  R) is associated with the value 1 of w3 and (-1)"' of E, and hence with the 
irrep (i, f ,  . . . , f ,  f) of so*(2n), which is therefore real. The subalgebra ~ l ( 2 " - ~ ,  H) is 
associated with the values - 1  and (-l) '"+l of w3 and E, and with the irrep (f,;,. . . , f ,  
-f), which is therefore complex (though pseudo-real). Thus there is a remarkable 
asymmetry between the two fundamental spinor irreps of so*(4n). 
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V. The isomorphism between s0*(6) and su(3,I) 

V.l. Given basis elements I , , ,  mrs, prp and qrs of s0*(6), as in (2.16), with r, s = 1, 2, 
3, we set 

where X,, represents either of M,,, A,,, and where (g,,)=diag(l, 1, 1, -1). Fur- 
thermore 

g+”M+,, = 0 (5.3) 

where g”” = g,”. These are the defining relations of su(3, l),  in a standard form (cf 
(2.17)), and since the linear transformation (5.1) from the basis elements of s0*(6) to 
those of su(3, 1 )  is real and invertible, this establishes the isomorphism of the two real 
Lie algebras. 

V.2. A finite-dimensional irrep of su(3, l )  is labelled [25] by a highest weight defined 
with respect to the Cartan subalgebra ( M I 1  + i M 2 2  + i M 3 3 ,  M22 + i M 3 3  + ; M I  M33 + 
f M I I + f M 2 , ) ;  we find that the irrep ( m l ,  m 2 ,  m3)  of s0*(6) is mapped by (5.1) into 
the irrep ( m ,  + m, ,  m1 - m , ,  m2 - m,) of su(3, l ) .  

In section VII, we have taken the basis elements of the su(3)Ou( l )  subalgebra of 
su(3 , l )  to be Ars (=L,), M,,-f8, ,Muu (=mrr-f8rsmuu),  and !M44 (=- iMuu) ;  the 
scaling of the U (  1 )  element is of course at our disposal, and we have chosen it so that 
the su(3) triplet contained in the four-dimensional irrep (1, 0, 0) of su(3 , l )  has u(1) 
value (baryon number) 1/3. 

VI. The isomorphism between s0*(8) and s0(6,2) 

VI.1. The existence of this isomorphism [26] is closely related to the triality property 
[4, 9, 101 of so(8). If we set 

k l 2 = 8 m l l  - m 2 2 + m 3 3 -  m44) = i ( j l , - j 3 4 + j 5 6 - j 7 8 )  

( 6 . 1 ~ )  
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(6.1 b )  

we find that the kcD (= -kDc), C, D = 1, 2 , .  . . ,8 ,  satisfy the defining relations of 
s0(6,2): 

(6.2) 

where (g,D)=diag(l, 1, 1, 1, 1, 1, -1, -1). Since the linear relations (6.1) between 
the kcD and the I,,, m,, etc. are real and invertible, this establishes the isomorphism 
in a direct if not very illuminating way. It can be given a deeper interpretation by 
considering the algebras involved as algebras over the quaternions [20]. Note that the 
kCD for C, D = 1, 2, . . . , 6  and k7* involve only the l,, and m,,, and vice versa. These 
are associated with so(6)@so(2) <s0(6,2) on the one hand, and u(4) < s0*(8) on the 
other. (Recall that so(6) = su(4).) 

[ kCD, kEF 1 = i (  gCEkDF + gDFkCE - gDEkCF - gCFkDE 

VI.2. Note that this mapping between s0*(8) and s0(6,2) can transform a spinor (or 
tensor) representation of the one into a spinor or tensor representation of the other. 
We need only observe that when the eigenvalues of Jlz, J34, J56,  and J78 are all 
half-integral, those of K I 2 ,  K, , ,  K56 and K7* defined by analogy to ( 6 . 1 ~ )  can be either 
all integral or all half-integral, and the same is true if the eigenvalues of the former 
set are all integral. 

Evidently an irrep of s0* (8)  is mapped into an irrep of s0(6,2) and vice versa. The 
question arises: given the finite-dimensional irrep ( m l ,  m 2 ,  m3,  m4) of s 0 * ( 8 ) ,  into 
what irrep of s0(6,2) is it mapped? 
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To answer this, we note that when (Jlz, J 3 , ,  J5b, J78)  have the eigenvalues ( m , ,  m,, 
m3 ,  m,) in this irrep, the corresponding eigenvector corresponds to a highest weight 
and so must be annihilated by the raising operators JI3 + iJZ3, J14+ iJz4, . . . ; J35 + iJ45, 
J36+iJ46,. . , ; JS7+iJb7, J5,+iJ6,. But then it follows from (6.1) that this vector is 
annihilated also by the operators K 7 ,  - iK,, , K75 - i K g s ,  . . . ; K54+ iK64, K 5 3  + 
iK6),  . . . ; K,3+iK23,  K,4+iK24;  so that it also corresponds to a highest weight in 
s0(6,2) with respect to the Cartan subalgebra (K78,  K56, K I 2 ,  K34). The corresponding 
weight vector in s0(6,2) is seen from ( 6 . 1 ~ )  to be ( m l ,  m; ,  m i ,  m i ) ,  where 

m ;  = t (  m ,  + m 2 +  m,+ m,) 

m i  = f( m ,  + m2 - m3 - m,) 

m ~ = ~ ( m , - m , + m , - m , )  
(6.3) 

m&=~(m, -m, -m ,+m, ) .  

Thus the mapping (6.1) carries the irrep ( m , ,  m,, m3 ,  m4) of s0*(8) into the irrep 
( m i ,  m i ,  m i ,  m i )  of s0(6,2). (Note that it therefore carries also the irrep ( m ; ,  m i ,  
m i ,  m;) of s0*(8) into the irrep ( m , ,  m,, m3 ,  m,) of s0(6,2).) 

For example, the spinor irrep (i,  f , f , - f) of s0*(8) is mapped into the tensor irrep 
(1, 1, 1, 0) of s0(6,2), while the spinor irrep (5, 5 ,  1 ,  - t )  is mapped into the spinor 
irrep ($, 2, i, t ) .  
VI.3. There is a check by dimensions [7]: 

d(ml,m,,m,,m,)=d(ml,m;,m;,mi) 

VI.4. Of particular interest are the defining 8-vector irrep (1, 0, 0, 0); the two 8-spinor 
irreps (f, f ,  f ,  f ) ,  (1 2 ,  1 2 ,  ,, 1 -1). , and the 28-dimensional adjoint irrep (1, 1, 0, 0) of 
s0*(8). These are mapped into the s0(6,2) irreps (4,  f ,  1, f), (1, 0, 0, 0), ( i ,  f ,  t ,  -:) 
and (1, 1, 0, O ) ,  respectively. 

The interchange of the 8-dimensional vector and spinor irreps (1, 0, 0, 0) and (f, 

exist which interchange any two of the three 8-dimensional irreps of that algebra, 
leaving the third invariant [9, 10, 41. This can be seen as follows. 

If we replace kl7, k18, .  . . , k,, in ( 6 . 1 ~ )  by ikI7 ,  ik18 etc, and k,, in ( 6 . 1 ~ )  by -k78, 
the operators so defined, together with the old kcD for C, D = 1, 2 , .  . . ,6 ,  satisfy the 
defining relations of so(8) rather than s0(6,2), i.e. relations like (6.2) with g,, replaced 
by &,. Furthermore, they are then related to the so(8) operators j,, by a real, 
invertible linear transformation. Then we have an isomorphism from so(8) into so(8) 
that interchanges one of the 8-spinor irreps with the 8-vector irrep, leaving the other 
8-spinor irrep invariant. However, we have also the alternative possibility of replacing 
in ( 6 . 1 ~ )  k17, kl8, k27,. . .by  -ikI7,  +ikI8,  -ik2,, . . . andleaving k7,in(6.1a)unchanged. 
Then we again have an isomorphism from so(8) into s0(8), this time interchanging 
the second 8-spinor irrep with the 8-vector irrep, and leaving the first invariant. These 

1 1 1  ,, 2 ,  2 )  can be regarded as a relic of the triality property of s0(8), whereby isomorphisms 
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two isomorphisms-together with the isomorphism (whose analogue exists for so(2n), 
any n )  that replaces j,, by -jc8, C = 1, 2 , .  . . , 7  and so interchanges the two 8-spinor 
irreps, leaving the 8-vector invariant-define the triality property of so( 8). 

A necessary condition for the triality is that the three 8-dimensional irreps have 
similar reality properties; in fact, for so(8) all three are real. As we have seen in IV.8, 
the 8-spinor irrep (4, 4, i ,  f) of so*(8) is real, while (f, 4, f ,  -i) is pseudo-real, as is 
the 8-vector defining irrep (1, 0, 0, 0). For s0(6,2), both of the 8-spinor irreps are 
pseudo-real, as we saw in IV.3, while the defining representation is real. Of the triality 
isomorphisms, only one mapping survives when we go from so(8) to its complexification 
and thence to the real forms so*(8) and s0(6,2)-the mapping (6.1), which maps the 
real 8-spinor irrep, the pseudo-real 8-spinor irrep, and the pseudo-real 8-vector irrep 
of s0*(8) into the real 8-vector irrep and the two pseudo-real 8-spinor irreps, respec- 
tively, of so(6, 2). 

Is there a version of the triality property involving any other of the real forms 
so( p ,  q ) ,  with p + q = 8, p 2 q? There are no isomorphisms between these algebras, 
and only for so(4,4) and so(8) do the defining irrep and the two fundamental spinor 
irreps have the same reality properties, as can be seen from the results of IV. It seems 
therefore that, apart from the so(8) case, and that involving so*(8) and s0(6,2), a form 
of triality can hold only for [27] so(4,4). 

VII. Physical applications 

VII.l. It is primarily the isomorphism of so*(8) with s0(6,2) that gives rise to interesting 
possible applications of so*(2n) ( n  3 4) as an extended spacetime symmetry algebra. 
We have already indicated in section I, some of Ward's ideas [ 191 concerning so*( 14). 
In this connection we consider only the reduction with respect to so(3, 1 ) 0 s u ( 3 ) O  
s u ( 2 ) O u ( l )  of the two fundamental spinor irreps, each of dimension 64; the defining 
14-vector irrep; and the 91-dimensional adjoint irrep. 

Firstly, with respect to the reduction so*(14) > s0*(8)@s0*(6) we have (the branch- 
ing rules are as for [6] so(14) > s0(8)Os0(6); we show the dimensions of irreps beneath 
their labels) 

Next we map each so*(8) irrep into a corresponding irrep of s0(6,2) according to 
(6.3), and reduce it with respect to so(3,2)Osu(2) according to well known rules. 
Also, we map each s0*(6) irrep into a corresponding irrep of su(3 , l )  according to 
(5.1), and reduce with respect to su(3)Ou( l ) .  For example, when s0* (S)@s0*(6)+  
s0(6,2)@su(3, l ) ,  

[ ( t ,  f ,  t,f), ( t ,  t ,  ;)I-+ [ ( I ,  o,o,  01, (1,0,0)1 (7.2) 
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and then, with respect to s0(6,2) > so(3,2)@su(2) 

while for su(3 , l )  > su(3)Ou( l )  we have 

(7.3) 

(7.4) 

In this way we find that, with respect to so*(14) > so(3,2)@su(3)Osu(2)Ou(l)  we have 
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Here the irreps (1, l ) ,  (1,0),  ( t ,  f) and (0,O) of so(3,2) are the 10-tensor (adjoint), 
5-vector, 4-spinor and scalar, respectively. Their reduction with respect to so(3, 1) < 
so(?, 2) is well known: 

(7.6) 

( 1 , 1 ) = ( 1 ,  l ) @ ( l , O ) @ ( l ,  -1) 
(10) (3)  (4) (3) 

(1 ,0 )=(1 ,0 )@(0 ,0 )  
( 5 )  (4) (1) 

( t ,  4) = ( t ,  f , @ ( f ,  -4) 
(4) (2) (2) 

(0,O) (0,O) 
(1) (1) 

where (1,O) is the 4-vector, (4, ;)@(;, -4) the Dirac spinor, and (1, l ) @ ( l ,  -1) is the 
antisymmetric tensor (adjoint) representation. 

VII.2. We shall not pursue the interpretation of these branchings in a field theory 
based on so*(14), merely noting that, as expected from our earlier remarks, both 
fermions and bosons can be accommodated in a single irreducible so*( 14) multiplet. 
Instead, we make a few remarks about a different, but related idea. In earlier work 
[28], the Clifford algebra %‘(2,5) has been used in a unified description of four Dirac 
particles, interpreted as the electron and its neutrino, the neutron and the proton. 
Their allowed quantum states have been associated with projectors in the algebra rather 
than eigenvectors of operators in a representation space. We now have the interesting 
possibility to extend this idea by choosing, for example, the Clifford algebra associated 
with one of the fundamental spinor irreps of so*(2n), n > 4. This gives rise to a bigger 
structure, able to incorporate both fermions and bosons. For example, consider the 
algebra %‘To = %(O, 9) associated with the 16-dimensional spinor irreps ( f  , i ,  4, i ,  *;) 
of so*(lO), and note that 

so*(lO)> s 0 * ( 8 ) @ s 0 * ( 2 ) - s 0 ( 6 , 2 ) @ u ( 1 ) ~ s o ( 3 , 2 ) @ s u ( 2 ) @ u ( ~ ) .  

The corresponding reduction formulae are 

(7.7) ( 1 1 1 1  2 9 2 1  2 , 2 , * t ,  = [ ( I ,  01, (01, (*4)1@[(0, 01, (11, (* t ) l@[(f ,  9, (9, ( q l .  
(16) ( 5 )  (1) (1) (1) (3) (1) (4) (2) (1) 

We see that, associated with each so*( 10) spinor is an so(3,2) 5-vector which is 
an su(2) singlet; an su(2) triplet of 5-scalars; and an su(2) doublet of 4-spinors. It 
may be possible to associate the Lorentz 4-vector in the 5-dimensional irrep of so(3,2) 
with the photon, and the two spinors with the electron and its neutrino; an interpretation 
of the scalars is not obvious. In any event, it is remarkable that it is apparently possible 
to describe configurations with spin 0 or 1, as well as spin 4, within the framework of 
one Clifford algebra %‘To, by extension of the ideas of [28]. We hope to follow up 
these ideas elsewhere. 

VII.3. Note that the occurrence of representations of so(3 ,2)  > so(3, 1) in the reduc- 
tions of so*(2n), n > 4, suggests a natural role for wave equations based on so(3,2), 
including Dirac’s equation (that is to say, for Lubanski-Bhabha [29] equations). In 
the case of so*(lO), however, this idea may be difficult to reconcile with the association 
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of the 4-vector in (7 .7)  with the photon, since the irrep ( 1 , O )  of so(3,2) is usually 
associated with spinless particles in the Lubanski-Bhabha framework. 

VII.4. The occurrence of both spinor and tensor irreps of so(3 , l )  in an irrep of so*( 10) 
or so*( 14) (or more generally of so*(2n), n > 4) reminds us of supersymmetry [30], 
although here we are working with Lie algebras, not superalgebras. However, at least 
in the case of the fundamental spinor irreps of so*(2n), which are associated with 
Clifford algebras containing anticommuting elements, we may well speculate that an 
alternative description of supermultiplets like those in (7.5) and (7 .7) ,  can be given in 
terms of some associated Lie superalgebras. 

VIIS. The possibility of both spinor and tensor irreps of s0(6,2) (and hence so(3 , l ) )  
arising can be linked to the fact that the so*(2n) algebra for n > 4 contains operators 
which transform as spinors with respect to s0(6,2), and so can change s0(6,2) rep- 
resentation labels by half-integral amounts. Their existence is readily understood in 
terms of what we have said above. Consider for example the case of so*(lO). Its 
forty-five basis elements can be regarded as consisting of the twenty-eight basis elements 
of so*(8) together with two so*(8)-vector operators and an so*(8)-scalar. (The situation 
is comparable to that for so(lO)> so(8).) However, when we map so*(8) into s0(6,2) 
as in (6.1), we have already seen that the 8-vector irrep of so*(8) is mapped into the 
8-spinor irrep ( f , i , f , f )  of s0(6,2). Thus the basis elements of so*(lO) can also be 
regarded as consisting of the basis elements of s0(6,2) together with two s0(6,2)-spinor 
operators and an s0(6,2)-scalar. Note that the two spinor operators both transform 
as ($, f ,  i ,  4) and not as the pair of fundamental spinor irreps. 

VII.6. In this paper, we have concentrated on finite-dimensional irreps of so*(2n). 
Since s0(6,2) contains the Lie algebras of the conformal group and the PoincarC group, 
it would be interesting also to examine the reduction of infinite-dimensional unitary 
irreps of SO*(2n), n > 4, with respect to these subgroups-for example, the ladder 
representations could be analysed in this way. Both integer and half-integer spin 
unitary irreps of these subgroups can be expected to appear in the reduction of a single 
unitary irrep of SO*(2n). In this connection one would like to find the analogue of 
the formula (6.3) for unitary irreps of SO*(8) and S0(6,2) .  

VII.7. The groups S0(4) ,  SO(3, 1) and S0(2 ,2)  are associated with 4-dimensional 
spacetime manifolds of different metric signatures. Is S0*(4) associated with some 
peculiar four-dimensional real spacetime? The answer is no; at least, not in the 
analogous way, because the 4-vector representation of S0*(4) is only pseudo-real. For 
the same reason, there is no direct analogue for S0*(4) of the inhomogeneous groups 
associated with SO(p, 4). A set of four operators comprising an SO*(4)-vector cannot 
define, with the six generators of S0*(4), a 10-dimensional real Lie algebra. But other 
representations of S0*(4) may be useful in higher-dimensional Kaluza-Klein-type 
theories; and the study of homogeneous spaces associated with SO*(2n), n > 4, and 
of associated inhomogeneous groups, may be of interest to physics because of the 
isomorphism of so*(8) and s0(6,2). Finally, we remark that [13] so*(16)(>so*(14)) 
is a maximal subalgebra of a non-compact real form of the exceptional Lie algebra 
E8, of relevance to superstring theories [4]. 
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